Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia.
نویسندگان
چکیده
This study assessed whether glucose-dependent insulin secretion and overall counterregulatory response are preserved during hypoglycemia in the presence of exenatide. Twelve healthy fasted volunteers were randomized in a triple-blind crossover study to receive either intravenous exenatide (0.066 pmol. kg(-1). min(-1)) or placebo during a 270-min stepwise hyperinsulinemic-hypoglycemic clamp (insulin infusion 0.8 mU. kg(-1). min(-1)). Plasma glucose was clamped sequentially at 5.0 (0-120 min), 4.0 (120-180 min), 3.2 (180-240 min), and 2.7 mmol/l (240-270 min). At 270 min, insulin infusion was terminated and plasma glucose increased to approximately 3.2 mmol/l. The time to achieve plasma glucose >/=4 mmol/l thereafter was recorded. Insulin secretory rates (ISRs) and counterregulatory hormones were measured throughout. Glucose profiles were superimposable between the exenatide and placebo arms. In the presence of euglycemic hyperinsulinemia, ISRs in the exenatide arm were approximately 3.5-fold higher than in the placebo arm (353 +/- 29 vs. 100 +/- 29 pmol/min [least-square means +/- SE]). However, ISRs declined similarly and rapidly at all hypoglycemic steps (</=4 mmol/l) in both groups. Glucagon was suppressed in the exenatide arm during euglycemia and higher than placebo during hypoglycemia. Plasma glucose recovery time was equivalent for both treatments. The areas under the concentration-time curve from 270 to 360 min for cortisol, epinephrine, norepinephrine, and growth hormone were similar between treatment arms. There were no differences in adverse events. In the presence of exenatide, there was a preserved, glucose-dependent insulin secretory response and counterregulatory response during hypoglycemia.
منابع مشابه
GLP-1, exendin-4 and C-peptide regulate pancreatic islet microcirculation, insulin secretion and glucose tolerance in rats.
GLP-1 (glucagon-like peptide 1) and its mimetic exendin-4 are used against Type 2 diabetes. C-peptide has also proven promising to enhance insulin action. Since insulin secretion in vivo can be rapidly tuned by changes in islet microcirculation, we evaluated the influence of GLP-1, exendin-4 and C-peptide on pancreatic IBF (islet blood flow), and dynamic changes in insulin secretion and glycaem...
متن کاملRole of epinephrine-mediated beta-adrenergic mechanisms in hypoglycemic glucose counterregulation and posthypoglycemic hyperglycemia in insulin-dependent diabetes mellitus.
Initially euglycemic (overnight insulin-infused) patients with insulin-dependent diabetes mellitus (IDDM), compared with nondiabetic controls, exhibit similar, but somewhat delayed plasma glucose nadirs, delayed glucose recovery from hypoglycemia, and posthypoglycemic hyperglycemia after the rapid intravenous injection of 0.075 U/kg of regular insulin. These abnormalities are associated with an...
متن کاملEvolution of Exenatide as a Diabetes Therapeutic
Type 2 diabetes (T2DM) is a disease of epidemic proportion associated with significant morbidity and excess mortality. Optimal glucose control reduces the risk of microvascular and possibly macrovascular complications due to diabetes. However, glycemic control is rarely optimal and several therapeutic interventions for the treatment of diabetes cause hypoglycemia and weight gain; some may exace...
متن کاملExendin-4 pharmacodynamics: insights from the hyperglycemic clamp technique.
The purpose of this study is to ascertain the pharmacodynamic properties of exendin-4, a glucose-dependent insulinotropic agent, from plasma glucose and insulin concentration-time profiles following a 60-min intravenous infusion in healthy and type 2 diabetic subjects. Plasma glucose and insulin concentrations were obtained from a previous clinical study, whereby a hyperglycemic clamp was estab...
متن کاملSomatostatin Receptor Type 2 Antagonism Improves Glucagon Counterregulation in Biobreeding Diabetic Rats
Impaired counterregulation during hypoglycemia in type 1 diabetes (T1D) is partly attributable to inadequate glucagon secretion. Intra-islet somatostatin (SST) suppression of hypoglycemia-stimulated α-cell glucagon release plays an important role. We hypothesized that hypoglycemia can be prevented in autoimmune T1D by SST receptor type 2 (SSTR2) antagonism of α-cells, which relieve SSTR2 inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 53 9 شماره
صفحات -
تاریخ انتشار 2004